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Abstract—The paper demonstrates how to apply a recursion on the fundamental concept of number.
We propose a generalization of the partitions of a positive integer n, by defining new combinatorial
objects, namely sub-partitions. A recursive formula is suggested, designated to solve the associated
enumeration problem. It is highlighted that sub-partitions provide a good language to study rooted
phylogenetic trees.
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1. INTRODUCTION

A partition of a number n is a way to present it as a sum of non negative integer numbers when
the order has no significance. An example to a partition of 3 is 3=1+2. The partition function is the
number of different partitions of a specific number n and it is written as p(n). The partition function is
first mentioned in one of Leibniz’s letters to J. Bernoulli (1674). He observed the first few values of p(n),
i.e. 1,2,3,5,7,11 and he considered the possibility that p(n) is a prime number for all n>1. Since p(7)=15,
Leibniz pose a different problem: Is there an infinite number of integers n for which p(n) are primes.
Until today there is no definitive formula to p(n), but there is an asymptotic formula to p(n) which was
discovered by Ramanujan and Hardy. In this paper we look at a tree with numbers written on its leaves.
The degree of this tree is the sum of these numbers. These trees are known as phylogenetic trees. In order
to answer the question how many phylogenetic trees are there of degree n, we can use the partitions of
the number. The answer to the general question of the number of trees is a recursion over the partitions
of n.

Another problem with a similar answer is the counting of the number of parentheses when there is
no significance to the order. Let us look, for example, at parentheses of order 2 ()();(()). When we look
at parentheses with order 3 there are 5 possibilities ()()();(())();(()());()(());((())). The general number
of possibilities is calculated by the Catalan numbers. But in the specific problem when the order is not
important like in the problem of phylogenetic trees the two possibilities ()(())=(())() are identical. Every
parentheses form of order n is related to some partition of n. On the other hand, for every partition we
can define a family of parentheses formed by using a process of inner recursion.
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2. A ROOTED PHYLOGENETIC TREE

A plane tree T can be defined recursively as a finite set of vertices, with a single distinguished vertex
r called the root of T , and the remaining vertices forming an ordered partition (T1, T2, . . . , Tm) of m
disjoint non-empty sets, each of which is also a plane tree. We will draw plane trees with the root on
the top level. The edges connecting the root of the tree to the roots of T1, T2, . . . , Tm will be drawn from
left to right on the second level. For each vertex v, the vertices in the next lower level adjacent to v are
called the children of v, and v is said to be their parent. Clearly, each vertex other than r has exactly one
parent. A vertex of T is called a leaf if it has no children (by convention, we assume that the empty tree,
formed by a single vertex, has no leaves), otherwise it is said to be an internal vertex. The outdegree of
a vertex v it is number of its children, and denoted by deg(v). It is well-known that the number of plane
trees with n edges equals

Cn =
1

n+ 1

(
2n

n

)
,

the n-th Catalan number (see [8, Exe. 6.19e]).
A rooted phylogenetic tree of [n] = {1, 2, . . . , n} is a rooted tree with the following property: (i)

the leaves of the tree are labeled with the elements of the set [n]; (ii) the sequence of the leaves is non-
increasing if we read the tree by its preorder that means that for any two children a, b of an internal vertex
v such that a is on the left side of v, the sum of the label of the leaves in the subtree of a is greater or
equal to the sum of the leaves in the subtree of b. Phylogenetic trees are an essential tool to describe
evolutionary relationships.

A partition of a positive integer n is a way of writing n as a sum of non-increasing sequences of
positive integers. A summand in a partition is also called a part and the number of partitions of n is
given by the partition function p(n). For instance, the partitions of 3 are given by 3, 2 + 1 and 1 + 1 + 1,
which implies that p(3) = 3. Up to now there is no explicit formula for p(n), for example, see [1] to find
several properties of the function p(n).

To keep track of all partitions, we write the larger number on the left-hand-side, so 3 + 1 appears
here, while 1 + 3 (which corresponds to the same partition) does not appear. We also order the partitions
by writing the partition having the larger number prior to the one having the smaller number, so that
the partition 3 + 1 appears before the partition 2 + 2, and 2 + 2 appears before 2 + 1 + 1. The different
partitions of a number n describe something that resembles indistinguishability of items, that is, if we
talk about three similar items we might prefer to use the partition 3, while if we talk about two similar
items and an extra one which is different from them, we might prefer to use the partition 2 + 1.

In this paper, we extend the concept of partitions of n to find a new combinatorial structure, which we
call sub-partition. This structure provides a good language to describe the rooted phylogenetic trees,
as it is discussed in the next section. With the use of sub-partitions we enumerate rooted phylogenetic
trees of [n] and provide a recursive formula. Klein and Shadmi [5] (see also [4]) discussed a notion similar
to sub-partitions.

3. SUB-PARTITIONS

If n = k +m is a partition of n, we can consider a sub-partition using the fact that (for instance)
k = t+ s, namely using the partition of each of the summands. Here, we assume that this is different
from simply taking the “other" partition n = t+ s+m (after a proper ordering of the elements), since
we want the sub-partition to be some kind of process internal to the summand. The process is defined
after we have already “finished" the partition, as if we are now sorting according to a different property.
As our first example, we can see that the two partitions of the number 2, namely {2} and {1 + 1}, where
we keep using the set notations as in the previous section, cannot yield anything new if we try to perform
a sub-partition, as the two counted items can either be identical (which corresponds to the partition {2})
or different (which corresponds to the partition {1 + 1}). There is nothing more to do in this case. For
the number 2, there are two partitions, and furthermore, there are also just two sub-partitions, and these
are identical to its partitions. However, we may look at this scenario differently: any attempt to have
additional sub-partitions (further partitioning of {1 + 1} or of {2}) will lead via recursion to an infinite
number of such sub-partitions.
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Considering a more interesting example, since {3}, {2 + 1} and {1 + 1 + 1} are the partitions of 3,
we believe that now it does in fact make sense to look at second-level partitions. As before, it is clear
that it is meaningless to perform sub-partitions on the partition {1 + 1 + 1}, and on the partition {3},
as this would lead again to an infinite number of sub-partitions, via recursion. Thus, using the number 3
to help us finding a proper definition, we see that recursions may be used, yet must be applied carefully.
For instance, in that case, it only makes sense to perform a sub-partition on the element {2 + 1} only.
The number 2 has two different partitions: “partition-a" which is {2} and “partition-b" which is {1 + 1}.
The process of performing a sub-partition on the number 3 by using a partition of the number 2 will
thus lead to splitting the partition {2 + 1} into two sub-partitions: if we replace the summand 2 in the
element {2 + 1} by its “partition-a" we get {{2} + 1} and if we replace the summand 2 in the element
{2 + 1} by its “partition -b" we get {{1 + 1}+ 1}. As this results from a sub-partitioning of the original
partition {2 + 1}, we consider the element {{1 + 1}+ 1} to be different from the element {1 + 1 + 1},
for the reasoning explained above.

For the number 3, we noticed that the elements {3} and {1 + 1 + 1}, obtained at the first level of
partition, cannot be further partitioned and it only makes sense to consider {2 + 1}. After the second
level, we thus obtain four sub-partitions for the number 3: {3}, {{2}+1}, {{1 +1}+1} and {1+ 1+1}.
Note that after the first partition we had {3}, {2 + 1} and {1 + 1 + 1}, therefore the notation we use here
helps us to distinguish a partition such as {2 + 1} from a sub-partition such as {{2} + 1}. Since {2} is
a singlet, the process of sub-partitioning has ended.

In the general case, terms that look like {a1 + a2 + · · ·+ ak} in the original partition are now (after
that sub-partitioning) containing at least two summands, where each summand ai is either the number
1, or it is replaced by {}, where any partition of ai can be inserted in the parentheses. For the number 3,
there is no need of a second recursion, but in general, there can be many levels of recursion. At the second
level of recursion the same process applies, and the recursion ends only when any term k appears directly
inside the parentheses. Indeed, notice that each step in the recursion corresponds to adding internal
parentheses. By applying the general procedure, we can directly compute (see Table 1) the number of
sub-partitions of n for some small values. We denote this number by spn:

Table 1. Number sub-partitions spn for n = 1, 2, . . . , 6.

n P (n) spn

1 1 1

2 2 2

3 3 4

4 5 11

5 7 30

6 11 96

The above examples are useful to clarify the next formal definition:

Definition 3.1. A sub-partition π of the integer n ≥ 2 can be constructed recursively as follows:

• either π = n,

• or for a fixed partition λ = λ1λ2 · · ·λk of n with at least k ≤ n parts, π is given by the
sequence

SPλ1 + . . .+ SPλk
,

where either SPm = {π′} with π′ is any sub-partition of m with at least two summands,
or SPm = m. In this case, π is said to be a λ-sub-partition of n. We assume that the sub-
partition of 1 is 1.
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In this context, SPλ1 , . . . , SPλk
are called the 1-parts of the sub-partition of π. We define the �-

parts of π to be the 1-parts of all the (�− 1)-parts of π. A part of π is a k-part of π, where k ≥ 1.
We denote the set of sub-partitions of n by SPn and its cardinality by spn, that is, spn = |SPn|.

There is a clear bijection between the sub-partitions of n and phylogenetic rooted trees of [n]; this
sequence is in [7, A141268]. For n = 2, we have two sub-partitions: 2 or 11-sub-partition 1 + 1. For
n = 3, we have four sub-partitions: 3, or 21-sub-partitions 2 + 1, {1 + 1}+ 1, or 111-sub-partition
1 + 1 + 1, as shown in the previous section. The sub-partition π = {1 + 1}+ 1 has two parts {1 + 1}
and 1; where 1 and 1 are the parts of {1+1}, which gives that the maltiest of parts of π are {1+ 1}, 1, 1, 1.

At first we obtain a recurrence relation for the number of sub-partitions of n. To do so we need the
following particular case.

Lemma 3.2. Let λ = kk · · · k︸ ︷︷ ︸
s times

λ′ = ksλ′ be any partition of n > ks such that the largest element of

λ′ is at most k − 1. Then the number of λ-sub-partition aλ of n is given by(
spk + s− 1

s

)
aλ′ ,

where aλ′ is the number of λ′-sub-partitions of n− ks.

Proof. From the recursive construction of the sub-partitions of n, we obtain that any λ-sub-partition
can be written as {SP1 + · · ·+ SPs + SP ′}, where SPj , j = 1, 2, . . . , s, is a sub-partition of k and SP ′

is any λ′-sub-partition of n− ks. Since the sum SP1 + · · ·+ SPs has the same value for any order of the
terms SP1, . . . , SPs, we obtain that the number of possibilities to construct a sub-partition of the form
SP1 + · · ·+ SPs such that SPj , 1 ≤ j ≤ s, is given by

(spk+s−1
s

)
. Hence, by the definition of aλ′ , we get

that the number of λ-sub-partition of n is given by
(
spk+s−1

s

)
aλ′ , as claimed.

Theorem 3.3. The number of sub-partitions of n, spn, satisfies the following recurrence relation

spn = 1 +
∑ m∏

j=1

(
spkj + sj − 1

sj

)
,

where the sum is over all partitions λ = (k1)
s1(k2)

s2 · · · (km)sm of n such that n− 1 ≥ k1 > k2 >
· · · > km ≥ 1.

Proof. Let λ = (k1)
s1(k2)

s2 · · · (km)sm be any partition ofn such that n− 1 ≥ k1 > k2 > · · · > km ≥ 1.
By Lemma 3.2, we have that the number of λ-sub-partition of n is given by

m∏
j=1

(
spkj + sj − 1

sj

)
.

Summing over all possibilities of λ, we obtain the equation in the statement. In the formula, 1 counts the
sub-partition {n}.

Applying the theorem for n = 1, 2, . . . , 8, we obtain sp1 = 1, sp2 = 2, sp3 = 4, sp4 = 11, sp5 = 30,
sp6 = 96, sp7 = 308, sp8 = 1052.

Definition 3.4. A �-sub-partition π of n is a sub-partition of n such that any part of π it is sub-
partition of at most �. We denote the number of �-sub-partitions of n by spn,�.

Clearly there exists only one 1-sub-partition of n, namely 1 + 1 + · · ·+ 1. The above theorem gives
that

spn,2 =
∑

λ=2b1a partition of n
(a+ 1) =

(
�n/2� + 2

2

)
,
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for all n ≥ 3. For instance, there are six 2-sub-partitions of 4, namely 2 + 2, 2 + 1 + 1, 2 + {1 + 1},
1 + 1 + 1 + 1, {1 + 1} + 1 + 1 and {1 + 1}+ {1 + 1}. Indeed, the above theorem gives the following
corollary.

Corollary 3.5. For n > � ≥ 1,

spn,� =
∑

λ=�s� ···2s21s1 parition of n

�∏
j=1

(
spj + sj − 1

sj

)
.

Definition 3.6. A strict sub-partition π of n is a λ-sub-partition of n such that the partition λ has
no equal parts. The number of strict sub-partitions of n by sspn.

From the above theorem, we get the following result:

Corollary 3.7. The number of strict sub-partitions of n is given by

sspn = 1 +
∑ m∏

j=1

sspkj ,

where the sum is over all partitions λ = k1k2 · · · km of n such that n− 1 ≥ k1 > k2 > · · · > km ≥ 1.

Applying the corollary for n = 1, 2, . . . , 8, we get ssp1 = 1, ssp2 = 1, ssp3 = 2, ssp4 = 3, ssp5 = 6,
ssp6 = 12, ssp7 = 28 and ssp8 = 65.

4. FORMS OF PARENTHESES

Let us examine all the possibilities to write parentheses in a correct manner. We call a possibility that
contains n pairs of parentheses, a possibility of degree n. The "degree" of a possibility K is the number of
pairs of parentheses it contains. There is only one possibility of degree 1: ().

There are 2 possibilities of parentheses of degree 2: (()) or ()().
The number of possibilities of degree 3 is 5:

()()(); ()(()); (()()); (())(); ((()))

The sequence defined by an = the number of possibilities of degree n is basically the Catalan Sequence,
and an are known as Catalan Numbers [Catalan numbers A000108]. The Catalan Sequence can be
computed in the following manner:

Cn =
1

n+ 1

⎛
⎝ 2n

n

⎞
⎠ .

Now let us go one step further and distinguish between possibilities only by what they contain and
by order. For instance, from now on,()(()) = (())(). Inspired from “Laws of Form” written by Spencer
Brown [10], we shall call the possibilities whose order is insignificant, “forms”. Now let us create a "sub-
partition" definition that fits those forms. Note that these sub-partitions (or forms) are applicable and
relevant, for instance in Biology or Computer Science, when counting the number of ways to arrange n
membranes in space. The number of forms (not possibilities) of degree 3 is 4 and not 5 as before. The
forms are :

()()(); ()(()); (()()); ((()))

We define (n) as the collection of all forms of parentheses that are wrapped with brackets and inside
them there is a form of degree n.

For instance: (2)= { (()()), ((()))}. Note that (0)={()}, (1)={(())} and (3) = {(()()()), (()(())), ((()())),
(((())))}.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 6 No. 4 2014



308 KLEIN, KHRENNIKOV

Table 2. Number of forms for n = 4.

Partition The recursion The forms that comes out of it

1 + 1 + 1 + 1 ()()()() 1

1 + 1 + 2 ()()(1) 1

1 + 3 ()(2) 2

2 + 2 (1)(1) 1

4 (3) 4

Total 9

This definition will assist us in computing the number of forms of degree n using a recursive process
on partitions of a number, by replacing the addend Kj in a partition, by(Kj -1) – that is, outer parentheses
and inside them a form of degree Kj -1 .

Examples for n=4:
In order to compute the number of forms of degree n, we start from the set of all partitions of a number.

Now we do a recursion on every addend but subtracted by 1 (because of the outer brackets).
Both sequences (forms and sub-partitions) can be computed using recursion on the partitions of

n.We denote this number by pfn.
The number of parentheses forms s of n, pfn, satisfies the following recurrence relation.

pfn =
∑ m∏

j=1

(
pfkj−1 + sj − 1

sj

)
,

where the sum is over all partitions λ = (k1)
s1(k2)

s2 · · · (km)sm of n such that n− 1 ≥ k1 > k2 > · · · >
km ≥ 1.

Table 3. An example of the number of partitions, sub-partitions and paratheses forms for some small
integers.

n 1 2 3 4 5 6

p(n) 1 2 3 5 7 11

sp(n) 1 2 4 11 30 96

pf(n) 1 2 4 9 20 48

5. CONCLUSION

Recently Ken Ono published a breakthrough in the theory of partitions. He discovered a fractal nature
in the structure of divisibility mod a prime number p which is an extension to the known results of
Ramanujan. In our paper we present a simpler use of fractals in the theory of partitions.

In the process of creating mathematics we invent new symbols and enrich their meaning by using
recursion. In this paper we have demonstrated how to apply a recursion on the fundamental concept of
number. We believe that it might be possible to generate more new structures which are based on this
idea.

We mention briefly some applications of partitions of natural numbers. In [4] applications of partition
theory to quantum physics and quantum information theory were considered. Partitions can be used
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for study of the fine structure of spectra – splitting of degenerate electron levels under the action
of external electromagnetic field. Another possible application might be to give a description to the
pilot-wave theory by Louis de Broglie as supported by the experiment on fluid mechanics by John
Bush. We can also mention applications to non-Archimedean physics. The idea that the Archimedean
axiom can be violated on the Planck distance was debated a lot, especially in superstring theory and
cosmology, see, e.g. [11, 12]. The basic mathematical objects of non-Archimedean theoretical physics
are ultrametric spaces. Geometrically such spaces are represented by trees; including homogeneous p-
adic trees. Partition theory provides a possibility for number-theoretic representation of trees and hence
ultrametric space; hence, it establishes a deeper connection between the non-Archimedean physics and
number theory.
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